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Abstract—Compressed videos constitute 70% of Internet traf-
fic, and video upload growth rates far outpace compute and stor-
age improvement trends. Leveraging perceptual cues like saliency,
i.e., regions where viewers focus their perceptual attention, can
reduce compressed video size while maintaining perceptual qual-
ity, but requires significant changes to video codecs and ignores
the data management of this perceptual information. This paper
describes Vignette, a new compression technique and storage
manager for perception-based video compression. Vignette com-
plements off-the-shelf compression software and hardware codec
implementations. Vignette’s compression technique uses a neural
network to predict saliency information used during transcoding,
and its storage manager integrates perceptual information into
the video storage system to support a perceptual compression
feedback loop. Vignette’s saliency-based optimizations reduce
storage by up to 95% with minimal quality loss, and Vignette
videos lead to power savings of 50% on mobile phones during
video playback. Our results demonstrate the benefit of embedding
information about the human visual system into the architecture
of video storage systems.
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I. INTRODUCTION

Compressed videos constitute 70% of Internet traffic and
are stored in hundreds of combinations of codecs, qualities,
and bitrates [1]–[3]. New domains of video production—e.g.,
panoramic (360°), stereoscopic, and light field video for virtual
reality (VR)—demand higher frame rates and resolutions,
as well as increased dynamic range. Further, the prevalence
of mobile devices with high-resolution cameras makes it
increasingly easy for humans to capture and share video.

For decades, video codecs have exploited how humans see
the world, for example, by devoting increased dynamic range to
spatial features (low frequency) or colors (green) we are more
likely to observe. One such perceptual cue, saliency, describes
where in a video frame a user focuses their perceptual attention.
As video resolutions grow, e.g., 360° video and 8K VR displays,
the salient regions of a video shrink to smaller proportion of
the video frame [4]. Video encoders can leverage saliency by
concentrating bits in more perceptually interesting visual areas.
Prior work, however, does not address the systems challenges of
integrating saliency information into large-scale video storage
systems [5]–[7]. In this work, we address the challenges of
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Fig. 1: Vignette provides two features to video storage systems:
a perceptual compression algorithm and a storage manager for
perceptually compressed videos.

storing and integrating this perceptual data into video storage
and processing systems.

Vignette is a new video storage system integrating perceptual
information to reduce video sizes and bitrates. Vignette is
designed to serve as a backend for large-scale video services,
such as content delivery systems or social media applications.
Vignette extends existing, modern codecs to take advantage of
the untapped perceptual compression potential of video content,
especially high-resolution video served in VR and entertainment
settings. We implement Vignette as an extension to LightDB [8],
a database management system for video. Our prototype of
Vignette demonstrates cost savings to cloud video providers and
power savings during mobile video playback. Using a neural
network trained to predict content saliency and an off-the-shelf
HEVC encoder, our saliency-based compression scheme can
reduce bitrate requirements by 80–95%. Our results show that
Vignette can reduce whole-system power dissipation by 50% on
a mobile phone during video playback. Quantitative evaluation
results validate that these savings come at no perceived loss
in video quality.

II. VIGNETTE SYSTEM DESIGN

Vignette consists of two components: Vignette Compression
and Vignette Storage; as shown in Figure 1, Vignette Com-
pression is used during the transcoding pipeline, and Vignette
Storage manages perceptual information with video data.

Vignette Compression works out-of-the-box with any system
that supports HEVC, including hardware accelerators. The
algorithm has three high-level steps: (1) generate a saliency
map for a given video file, (2) determine the optimal number
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of rows and columns, which we call a “tile configuration”,
to spatially partition the video into, and (3) select a per-tile
mapping of saliency values to encoder qualities.

Vignette Storage manages perceptual information as simple
metadata embedded within videos or maintained in the storage
system. This reduces storage complexity for data management
and ensures Vignette data is transparent to saliency-unaware
video applications such as VLC. The storage manager supports:
(1) low-overhead perceptual metadata transmitted alongside
video content, (2) storage management policies to trigger one-
time perceptual compression, (3) a feedback loop for refining
perceptual video compression with cues from user viewing
devices, and (4) a heuristic-based search for faster perceptual
compression.

A. Vignette Compression

Vignette Compression uses off-the-shelf video codec features
to encode perceptual information and improve coding efficiency.
Our technique takes a video as input, generates a per-frame
saliency map for the video, and aggregates the per-frame maps
into a single video saliency map. Vignette Compression then
transcodes the input video with a tiled encoding, where the
quality of each tile corresponds to the saliency of the same tile
in the video’s saliency map. It uses only the native features
of the HEVC codec to ensure compatibility with other video
libraries.

1) Automatically Generating Saliency Maps: We use MLNet
( [9]) to automatically generate a corresponding saliency map
for a video input. Figure 2 shows the saliency map generated
for a video frame and how the generated maps capture the
visual importance of a given video frame. The process requires
decoding the video and processing each frame through the
neural network to produce output saliency maps. We accumulate
the per-frame saliency maps into a single map by collecting
the maximum saliency for each pixel in the frame across the
video file. These aggregated saliency values produce a single
saliency map of importance across the video.

2) Leveraging Saliency With Tiled Video Encoding: Once
a saliency map for each video is produced, we then use
it to perceptually encode videos with the tiling feature in
HEVC [10]. To produce saliency-based tiled video encoding,
we divide a video segment spatially into tiles and then map
each tile to a quality setting. The saliency map’s value at each
tile determines the tile’s quality setting. For simplicity and
generality, the tiling patterns we use are rectangular tiles with
uniform width and height across the video frame. We use the
same tile configuration throughout the entire 10-20 second
video segment for coding simplicity. We select the number of
rows and columns in each a tiling pattern based on either an
exhaustive search of all tile configurations or a heuristic-guided
search, described in §II-B3.

While tiling is simple and provides coding benefits, a
given tile configuration can incur overheads from introducing
suboptimal encoding boundaries. A poor tile configuration
produces less efficient videos than a standard encoding pass,
especially for fast-moving scenes.

Fig. 2: Overview of Vignette Compression algorithm.

We minimize the penalty of adding tile boundaries in areas
that would benefit from being encoded together by exhaustively
enumerating all tile configurations. We consider only uniform-
sized tiles by evaluating across all row-column pairs a video
frame allows. In practice, we enumerate tile configurations
ranging from 2×2 to 5×10 and 10×5, compress the tiles
according to their saliency values, and measure the resulting
bitrate and video quality achieved. This exhaustive enumeration
takes about 30 minutes per 15-second video to find the best
tile configuration with our experimental setup.

3) Mapping Saliency to Video Quality Rates: Each HEVC
tile is encoded at a single quality or bitrate setting throughout
the video stream, requiring Vignette Compression to select
per-tile encoding qualities. We deconstruct saliency maps into
per-tile parameters by mapping the highest encoding quality
to the maximum saliency value in the tile’s saliency map. For
evaluation simplicity, we use a perceptually-controlled version
of a target bitrate, where the target bitrate either corresponds
to the bitrate of the original video or is specified by the API
call. The highest-saliency tiles in the video are assigned the
target bitrate, and tiles with lower saliency are assigned lower
bitrates, with a minimum bitrate of 10% the original video
bitrate. As shown in Figure 2, we encode a 0-255 saliency map
as discrete bitrates corresponding linearly from a minimum
value to the target bitrate or quality, which is the maximum.

B. Vignette Storage

Vignette Storage exposes perceptual video compression
to applications by providing three features: (1) transparent
perceptual metadata, (2) simple storage management policies,
and (3) a search algorithm that reduces transcoding cost. A 360°
video player, for example, can initialize videos to be oriented in
the direction of a high-saliency region it decodes from Vignette
metadata, but the videos can also be played traditionally
in a standard video player like VLC. Vignette Storage can
switch between open and closed-feedback loops for perceptual
transcoding; in “open loop” mode, a video is perceptually
compressed once based on automatically generated saliency
maps, and in “closed loop” mode, perceptually compressed
video can be updated based on cues from user-end viewing
devices. The heuristic search feature included in Vignette
Storage leverages intrinsic video features to enable ∼30×
faster perceptual transcoding at near-optimal quality results.
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TABLE I: Vignette API

Function Compression Type Data required

transcode General <IN video, IN CRF/target bitrate, OUT video>
vignette transcode Perceptual <IN video, (IN CRF/target bitrate,) OUT video, OUT saliency metadata>
vignette squeeze Perceptual <IN video, IN CRF/target bitrate, OUT video>
vignette update Perceptual <IN video, IN fixation map, OUT video, OUT saliency metadata>

1) Saliency Map Metadata: Video storage systems maintain
containers of compressed video data that store relevant video
features in metadata. Vignette Storage adopts this approach,
and injects a small amount (∼100 bytes) of saliency metadata
inside each video container. We encode this map as a bitstring
that includes fields for the number of rows and columns
used for tiled saliency and the saliency weights for each
tile. These bitstrings typically range in size from 8–100 bytes.
The metadata is included as a saliency trak, similar to other
metadata atoms in a video container, so that applications with
and without perceptual support can decode Vignette videos.

2) Vignette Storage API: The Vignette Storage API defines
functions to support open- and closed-loop modes. Table I
shows the programming interface for Vignette, which includes
three perception-specific operations: vignette transcode(),
vignette squeeze(), and vignette update(). Each API
operation ingests a video and some required parameters
and outputs a video with any generated perceptual metadata
encapsulated in the video container.
Transcode Functions. When a new video is uploaded to
the storage system, the storage manager triggers the general-
purpose transcode() function to transcode the video to any
specified bitrates and formats for content delivery. This function
takes as input a video and target quality parameter, expressed
either by CRF or bitrate, and produces a regularly transcoded
video.

The vignette transcode() function is the default
saliency-based API call. It takes as input a video and an
optional quality or bitrate target, and produces both a video
and its corresponding generated saliency metadata. When
vignette transcode is triggered, Vignette Storage generates
new saliency maps, and then compresses the video according
to the target quality expressed.
Quality Modulation Functions. As noted in §II-A3, Vignette
Compression maps saliency to quality levels for each tile. A
vignette squeeze() call will re-compress a video using
a specified, reduced bitrate or quality threshold. It takes
in a video, target bitrate, and saliency mapping and pro-
duces the newly compressed video. For instance, vignette -
squeeze(input.mp4,100k) transcodes a previously saliency-
encoded video from a higher bitrate to a maximum of
100kbps in the most salient regions. The vignette squeeze()
function will recompress videos from a higher quality mapping
to a lower one, but it will not transcode low-quality videos to
a higher-quality mapping to avoid encoding artifacts.
Functions for Updating Perceptual Maps. Vignette Storage
also supports a “closed-loop” mode, where saliency maps

TABLE II: Video datasets used to characterize Vignette.

Type Benchmark Description Bitrate (Mbps) Size (MB)

Standard vbench [12] YouTube dataset 0.53–470 757
Netflix [11] Netflix dataset 52–267 1123

VR VR-360 [13] 4K-360 dataset 10–21 1400
Blender [14] UHD / 3D movies 10–147 6817

are updated with new information from eye tracking devices.
To invoke this mode, Vignette Storage uses the vignette -
update() function to ingest and re-process videos with new
perceptual information. Similar to how Vignette constructs
per-video saliency maps, vignette update() updates the
video’s saliency map with eye tracker information by executing
a weighted average of the original map and the input eye
tracker map.

3) Heuristic Search for Tile Configurations: Most of Vi-
gnette’s computation overhead comes from the exhaustive
search over tile configurations for a given video. This exhaus-
tive search is typically performed once, upon video upload,
but consumes significant processing time. Vignette Storage
contributes a lower cost search algorithm that achieves near-
optimal results with a ∼30× performance improvement, for
situations where fast saliency-based transcoding is required,
e.g., for a newly uploaded video.

Vignette’s search technique uses motion vector information
from encoded video streams to estimate the size of video tiles.
It enumerates tile configurations that group regions of high
motion together, and selects a configuration that minimizes the
difference in motion vector values across tiles. This heuristic
approximates the observation that high-motion areas should
not be divided across multiple tiles. Yet, this technique works
well because good tile configurations are able to encapsulate
redundant motion or frequency information with a single
tile, rather than replicate it across tiles. Compared with an
exhaustive search, which can transcode a video hundreds of
times to empirically produce the optimal tile configuration, our
algorithm produces a result ∼30× faster than the exhaustive
method and within 1 dB of the best-PSNR result when executed
over the videos we use in our evaluation.

III. EVALUATION

We implement Vignette by extending LightDB [8], a database
management system for VR videos, and compare against the
HEVC implementation included with FFmpeg. We measured
quality using two visual quality metrics: peak signal-to-noise
ratio (PSNR) and eye-weighted PSNR (EWPSNR).
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(a) Input video frame from Netflix [11]. (b) Saliency map produced by MLNet [9],
overlaid on input.

(c) Perceptually-compressed Vignette
video, 85% smaller at iso-quality.

Fig. 3: Example video still, neural network-generated saliency map, and output Vignette perceptually compressed video.

Fig. 4: Aggregate storage savings by dataset. Vignette Com-
pression reduces videos to 1–15% of their original size while
maintaining PSNR of 34–39 dB and EWPSNR of 45-51 dB.

A. Storage and Bandwidth Savings

We applied Vignette Compression to a corpus of videos,
listed in Table II. We transcoded our video library at iso-
bitrate in salient regions and decreased bitrate linearly with
saliency to a minimum 10% target bitrate in the lowest saliency
tiles. Figure 4 shows aggregate storage savings, partitioned by
dataset. Overall, we find that Vignette Compression produces
videos that are 1–15% of the original size when maintaining the
original bitrate in salient regions. These compression savings
include the fixed overhead of perceptual metadata, which is
<100 B for all videos. Datasets with higher video resolutions
(Blender, VR-360) demonstrated the highest compression
savings. The vbench dataset, which is algorithmically chosen
to have a wide variance in resolution and entropy, exhibits a
commensurately large variance in storage reduction. Of the
videos with the lowest storage reduction, we find that each
tends to have low entropy, large text, or other 2D graphics that
are already efficiently encoded.

Table III shows the average reduction in bitrate and resulting
quality, measured in PSNR and EWPSNR. Our results show that
EWPSNR results are near-lossless for each benchmark dataset,
while the PSNR values—which do not take the human visual
processing system into account—nonetheless remain acceptable
for viewing. Figure 3 highlights a Vignette video frame from the
Netflix dataset, with an output PSNR of 36 dB and EWPSNR of
48 dB. Overall, the results indicate that Vignette Compression
provides acceptable quality for its compression benefit.

TABLE III: Average bitrate reduction and quality measurements
for Vignette Compression by dataset. For PSNR and EWPSNR,
> 30 dB is acceptable for viewing, 50 dB+ is lossless.

Bitrate PSNR Eye-weighted
Benchmark Reduction (dB) PNSR (dB)

vbench 85.6 % 39 51
Netflix 98.6 34 45
VR-360 98.8 36 45
Blender 98.2 39 49

TABLE IV: Mean processing time per video, evaluated over
all videos in our datasets.

Exhaustive Heuristic

Task Time (s) % Time (s) %

Generate saliency map 1633 49% 1633 95%
Compute tile configuration 1696 50 59 4
Saliency-based transcode 21 1 21 1

Total 3350 1713

B. Compute Overhead

Vignette Compression bears the additional processing over-
head of executing a neural network to generate or update
saliency maps. Vignette Storage can switch between an
exhaustive or more computationally-efficient heuristic tile
configuration search to uncover optimal tile configurations
for a video. We benchmarked the latency of the combined
saliency and transcoding pipeline in two modes: exhaustive,
which generates saliency maps per frame and exhaustively
evaluates tiling, and heuristic, which uses the heuristic search
algorithm to select a tile configuration within 0.25 dB of the
best-PSNR choice (§II-B3). Table IV shows generating saliency
maps in either mode dominates computation time for Vignette,
and that our heuristic search is 33× faster than an exhaustive
search. This step, however, is only executed once per video
and off the critical path for video streaming workloads.

C. Analytical Model of Vignette Data Center and Mobile Costs

We use our evaluation results to model Vignette’s system
costs at scale for data center storage and end-user mobile power
consumption. While these results are a first-order analysis, they
suggest the potential benefit of deploying Vignette.
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Fig. 5: Estimated AWS costs for deploying Vignette versus
traditional video transcoding. Vignette’s additional compute
cost is amortized after ∼2 billion video views over a 1-million
video library.

Data center compute, storage, and network costs. We
modelled the break-even point for systems that store and
deliver video content, using pricing from an Amazon Web
Services (AWS) GPU instance, and varied the number of videos
transferred to the Internet as a proxy for video views. Larger
companies likely use Reserved or Spot Instance offerings,
which provide better value for substantial utilization. We
assume a video library of 1 million 10-MB videos, encoded at
100 different resolution-bitrate settings to produce ∼500 TB
of video data. Figure 5 shows how different pricing models
produced different savings at small numbers of video library
views, but that Vignette becomes cost-effective at large video
viewing rates. A system would need to service ∼2 billion
total views across a million-video library before amortizing
Vignette’s compute overhead across transmission and storage
savings. This number is easily reached by large video services;
Facebook reported 8 billion daily views in 2016 [15].
Mobile Power Consumption. To investigate whether Vignette
videos can achieve power savings, we profiled power consump-
tion on a Google Pixel 2 phone during video playback of
Vignette videos and standard HEVC-encoded videos.

We played our 93-file video library in a loop until the battery
charge dissipated from 100% to 30%, conducting three trials
each for our HEVC baseline and Vignette videos. Figure 6
shows that Vignette video enabled 1.6× longer video playback
time with the same power consumption, or, ∼50% better battery
life while viewing a fixed number of videos. While hardware
decoder implementations are typically proprietary, these results
indicate that perceptual compression has benefits for mobile
viewers, as well as cloud video infrastructure.

IV. RELATED WORK

Saliency-based compression: Vignette builds on a large body
of work in saliency-based compression. Early work improved
the accuracy of saliency prediction [5], [16], the speed of
computing saliency [7], [17], or coding efficiency [4], [18], [19];
these existing solutions required custom versions of outdated
codecs or solving costly optimization problems during each
transcoding run. More recently, multimedia and networking
research optimized streaming bandwidth requirements for 360°

Fig. 6: Time to dissipate a Google Pixel 2 phone battery
from 100% to 30% when viewing HEVC and Vignette videos
continuously. Vignette videos provide 1.67× longer video
playback on mobile phones.

and VR video by decreasing quality outside the VR field-
of-view [13], [20], [21]; while similar in spirit to perceptual
compression, this only compresses to non-visible regions of a
video. Vignette fundamentally differs from other contributions
in perceptual compression by introducing a system design
that can flexibly use any saliency prediction algorithm or
video codec, rather than focusing only on accuracy, speed,
or efficiency of saliency prediction.
Video streaming and storage systems: The rise of video
applications has driven significant recent work in processing
and storage systems for video content. Social media services
like Facebook or YouTube distribute user-uploaded content
from many types of video capture devices to many types of
viewing devices, typically serving a small number of popular
or livestreamed videos at high quality and low latency, as
well as a long tail of less popular videos [22], [23]; this
motivated custom media storage and fault-tolerant frameworks
for processing videos [1], [12]. Entertainment platforms like
Netflix and Amazon Video have smaller video libraries but
much more network traffic. These services transcode and store
videos for different qualities, network bandwidths, streaming
device, and video scene [2], [24], [25]. For both domains,
Vignette is a complementary design that solves the challenges
of integrating perceptual information with video storage.

V. FUTURE WORK

Reducing compute overhead. Vignette’s high one-time com-
pression cost is its biggest drawback, but can be improved.
Its performance stems from the use of a highly accurate but
slow neural network for saliency prediction, which does not
yet use a GPU or any modern DL framework optimizations.
Further, this expensive compression is run only once, and is
easily amortized across many views (§III-C).
Integration with other video system optimizations. We
could further improve Vignette by building on other optimiza-
tions that work with off-the-shelf video standards. For instance,
Vignette’s heuristic search algorithm could target more power-
efficient tiling configurations with knowledge of open-source
video transcoding ASICs [26], [27], or better streaming quality
using Fouladi et al.’s codesigned network transport protocol and
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video codec [28]. Integrating Vignette with these systems could
further improve power efficiency during playback, transcoding
latency, or archival video storage durability.

VI. CONCLUSIONS

Vignette integrates perceptual compression techniques into
video storage infrastructure to improve storage capacity and
video bitrates while maintaining perceptual quality. Our infras-
tructure supports a feedback loop of perceptual compression,
including updates as an application gathers data from sources
such as eye trackers. Our offline compression techniques deliver
storage savings of up to 95% with no perceptual quality loss
for Vignette videos 50-75% smaller in size. Vignette’s design
complements the contributions of existing large-scale video
storage and processing systems. Video systems can use Vignette
to further improve storage capacity or in anticipation of video
workloads that produce perceptual information.
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